Photonic engineering of fluorescent dyes

9 Janvier 2013 , Rédigé par JW Publié dans #Recent research work

The development of bright water-soluble luminescent probes is a ubiquitous problem in imaging and sensing applications. Designing fluorescent dyes typically relies on a molecular engineering approach in which photophysical properties are tuned by chemical modifications. In a letter published in Angewandte Chemie, we present a novel way of engineering luminescence by changing the photonic environment of a chromophore while maintaining its solubility. This has remained a challenge since the pioneering of this field in the 1970s, mainly because the photonic approach requires combining, in a single hybrid nanostructure, a luminescent molecule and an optical cavity that confines the electromagnetic field.

We solve this challenge by producing purified suspensions of gold nanoparticle dimers linked by a single DNA double strand exhibiting one a single dye molecule. Tuning the electromagnetic field enables unprecedented photophysical properties, such as decay rates and excitation cross-sections enhanced by more than one order of magnitude compared to an optimized, commercial chromophore.

Free access alternative pdf version of the letter can be found via arXiv:1210.6790