ERC Starting Grant ExtendFRET results story on Cordis
CORDIS (Community Research and Development Information Service) is a key instrument for effective dissemination and exploitation of EU-funded research results. Our ExtendFRET project was recently selected by the CORDIS Editorial Team to be written about in a "Results in Brief" article, given the exciting results and promising aspects of the project.
Full CORDIS article: Tailoring light-molecule interaction at the nanoscale
4th Summer School On Plasmonics SSOP4, Sept. 2017, Porquerolles
Submissions and registrations for the 4th Summer School On Plasmonics (SSOP4) are now open. The school will be held on September 3-8, 2017, in Porquerolles, one of the most beautiful island of the Mediterranean sea. Please find more information at http:www.fresnel.fr/ssop4/
Lectures and tutorials presented by international specialists on plasmonics will cover the following topics:
- Resonant Light scattering by nanoparticles
- Interaction forces between plasmonic nanoparticles
- Hyperbolic Metamaterials, Metasurfaces
- Purcell factor, single photon sources, FRET, fluorescence, strong coupling
- NSOM microscopy
- Spectral filters
- DNA nanotechnologies, plasmonic sensors
- Cathodoluminescence spectroscopy
- Nanofabrication technologies,Ellipsometry and polarimetry
Key arguments for your supervisor: rare advanced lectures on modern plasmonics + excellent quality of invited lecturers + excellent value for the money, the registration fee covers all accomodation & food expenses.
NanoVista project results on Cordis
From the ICFO news: The European Commission has a very clear strategy for the effective dissemination and exploitation of EU-funded research results in which CORDIS (Community Research and Development Information Service) plays a primary role. The NANO-VISTA project, coordinated by ICREA Professor at ICFO Dr. Maria Garcia-Parajo, was recently highlighted by the European Commission’s Project Officer and selected by the CORDIS Editorial Team to be written about in a "Results in Brief" article, given the exciting results and promising aspects of the project.
Full CORDIS article: Nanophotonic antennas unveil the nanoscale mechanisms of disease
Turning Plasmonic Antennas on the Right Side: Template Stripping Maximizes Single Molecule Fluorescence Enhancement
Plasmonics is looking for nanogap antennas featuring narrow gap sizes, full accessibility to the plasmonic hotspot and high fabrication throughput. However, the current fabrication methods remain limited to gaps typically around 15-20 nm. Importantly, the plasmonic hotspot is often buried into the structure and not directly accessible for sensing at the antenna surface, thereby limiting the antenna optical performance when it comes to probing molecules.
In a recent Nano Letter article “In-plane plasmonic antenna arrays with surface nanogaps for giant fluorescence enhancement”, we present large arrays of nanoantennas, fabricated by a new approach combining electron beam lithography with planarization, etch back and template stripping. The flat arrays of nanoantennas feature 10 nm gaps with sharp edges and direct surface accessibility of the plasmonic hotspot. This improved nanoantenna fabrication and full access of the hotspot opens up the possibility of fully exploiting the physical properties of plasmonic antennas for a broad range of applications, such as biosensing at membranes or in nanofluidic channels, light harvesting, photocatalysis…
Significance:
- We demonstrate the superior performance of these surface antennas by probing single fluorescent molecules, and reach huge fluorescence enhancement factors up to 15,000-fold, outperforming previous plasmonic realizations.
- Compared to the previous methods, the combination of back etching with template stripping drastically improves the optical performance of plasmonic nanoantennas by more than one order of magnitude, as we show in a direct comparison with focused ion beam milling.
- Our fabrication approach is fully scalable, with excellent reproducibility, and can be applied to virtually any antenna design.
Celebrating the 10 years of ERC
Many things change in ten years, the thirst for discovery remains.
More links on CNRS celebrating the ERC here and on the ERC grantees within CNRS.