PhD open positions nanophotonics biophotonics France
The Institut Fresnel at Marseille is seeking to recruit talented, enthusiastic young scientists who are highly motivated to boost their research career in the areas of nanophotonics and biophotonics and join the prestigious European Erasmus Mundus Doctorate program Europhotonics.
Check out the five open PhD positions in nanophotonics and biophotonics and enjoy the living in the South of France:
- Photonic antennas for super-resolution imaging and dynamic sensing on cell membranes, Jérome Wenger (FRESNEL - équipe MOSAIC) et Maria Garcia-Parajo (ICFO, Barcelona)
- Silicon photonics : engineering the optical properties of Si-based photonic devices, Nicolas Bonod (FRESNEL - équipe CLARTE) et Massimo Gurioli (LENS, Florence)
- The role of coherence in energy efficiency uncovered by fs single molecule detection, Hervé Rigneault (FRESNEL - équipe MOSAIC) et Niek van Hulst (ICFO, Barcelona)
- Super-resolution imaging using unknown illuminations, Hugues Giovannini, Anne Sentenac (FRESNEL - équipe SEMOX) et Pablo Loza , David Artigas (ICFO, Barcelona)
- Modelling and first observation of plasmon-soliton waves, Gilles Renversez (FRESNEL - équipe CLARTE) et Romain Quidant (ICFO, Barcelona)
Search engine optimization for scientific authors
As the ACS ads puts it, it is no longer sufficient to publish not to perish, your paper needs to be found. The good news is that scientific editors come to maximize the benefit we (and they) can get from search engine optimization for scientific papers.Check the links, your abstract will never look the same...
SEO for authors by Wiley
Optimizing your article for search engines by Wiley-Blackwell
Be found or perish by ACS
Get found. Optimize your research articles for search engines by Elsevier
Interestingly, I didn't find any of these speaking about getting your research article freely accessible via open access or redeposition websites. Business is business
Beaming of fluorescence light with plasmonic crystals
Collecting each and every photon that a single molecule emits is a major goal in nanophotonic devices. To boost extraction efficiencies, the two mainstream strategies are on one hand plasmonics to enhance local field strengths and induce antenna effects, and on the other hand photonic crystals that aim to redirect light using strong dispersion at photonic band edges.
In a recent ACS Nano publication, we bridge the gap between these two opposite but complementary approaches and demonstrate a general strategy based on a plasmonic analog of photonic crystals. We show that already small plasmonic crystals patterned in gold film result in strong directionality of emission for molecules located in the structure.
This work pioneers the control of directionality by coherent coupling in finite antenna arrays driven by a single emitter. Moreover, it demonstrates that fluorescence radiation patterns can be designed at will by engineering surface plasmon Bloch modes. These results open a rich toolbox to engineer single photon emitters to emit selectively in particular angles, polarization states, or in more exotic beam profiles.