Surface passivation of zero-mode waveguide nanostructures: benchmarking protocols and fluorescent labels
Zero-mode waveguide nanoapertures receive a large interest owing to their ability to confine light at the nanoscale and improve the detection of single fluorescent molecules. However, unwanted adhesion of the targeted molecules onto the metal surface can be a major issue.
In a recent article published in Scientific Reports, we highlight the role of the fluorescent dye in the surface adsorption phenomenon and we quantify the efficiency of different passivation approaches.
Significance:
- Despite its small size, we show that the fluorescent dye plays a key role in mediating the DNA molecule adsorption to the surface, with the dye’s surface charge and hydrophobicity being determining factors.
- We benchmark different surface passivation approaches and determine the most efficient approach to suppress nonspecific adhesion.

[ArmadaCrew] Emergency evacuation order
[Arcadia - Queen Emeraldas Revenge - Shadow Princess - Ebbesen's blade crew member]
Immediate evacuation order by emergency exits. This is not an exercise. Retreat with calm and discipline.
----
Gentlemen, it's been an honour and a privilege to be your captain over these years. Good luck to all of you.
[End of transmission]

... and remember I expect your results and reports twice a week. There are things bigger and nastier than a virus that still exist...
No virus will stop the ERC
Organic chemistry is gaining an increasing interest in the optics lab these days. According to WHO, here is a simple hanrub sanitizer recipe:
For a 1L solution, mix 833mL ethanol 96%, 4.2mL hydrogen peroxide 30%, 1.5mL glycerol and 161mL pure water. Shake well, avoid eye contact and do not even think of drinking it.

Even viruses have nightmares. So wash your hands and get results before he finds you...

Adhesion Layer Influence on Controlling the Local Temperature in Plasmonic Gold Nanoholes
Adhesion layers of chromium or titanium are widely used in plasmonics to ensure a proper adhesion between a gold film and a glass substrate. However, very little is known about their influence on the thermal response. As a result, the adhesion layer is often ignored while designing the experiments.
In a recent article published in Nanoscale, we demonstrate both experimentally and numerically that the adhesion layer can have a major impact on the thermal response of plasmonic structures.
Significance:
- We quantify the role of the adhesion layer in setting the local temperature around a single nanostructure milled in a gold film.
- We show how to promote or avoid the temperature increase using different experimental designs. This further expands the plasmonic toolbox for heat-controlled experiments.
Also available (soon after the #!;/%# embargo) on HAL 02461519

Reproducing Fresnel-Arago experiment to illustrate the main concepts of physical optics
Following our video series on Fresnel-Arago experiment's modern version, we have relased an arXiv paper describing how to mount the setup, prepare the sample and perform a selection of experiments.
Many concepts of physical optics can be visually illustrated on a relatively simple optical setup in a table-top format, not requiring any very specific equipment. Diffraction, interferences, speckle, image formation, Fourier optics, strioscopy are among the many themes to be shown using this demonstration system.
