Articles récents

ERC Proof of Concept project funded!

19 Mai 2015 , Rédigé par JW

ERC Proof of Concept project funded!

We are glad to report that our proposal PHOCCS has been accepted for funding by ERC Proof of Concept scheme. The project officially starts on May 1st 2015 for 18 months.

Abstract: Across Europe, nearly 250,000 people die every year of sepsis, a severe bloodstream infection. Detecting molecular biomarkers indicative of bacterial infection within a limited time is vital to enable targeted antibiotics therapy, limit the risk of antimicrobial resistance and reduce hospitalization costs. The key to success to fight sepsis is a fast detection technology that avoids the need for nucleic acid amplification processes and circumvents the limitations of fluorescence labelling.

The PHOCCS project aims at exploiting novel concepts based on PHOton Cross Correlation Spectroscopy to develop a breakthrough platform for ultra-sensitive detection of DNA biomolecules and assess its transferability into the large molecular diagnostics market. With its unique technology based on dynamic light scattering of noble metal nanoparticles, PHOCCS has several key advantages to enable commercial success: it is fast, quantitative, sensitive, specific and simple to operate.

Based upon original and patented intellectual property, PHOCCS is fully targeted to the development of a disruptive technology fundamental in strategic applications of molecular diagnostics to fulfil the industrial market needs. The PHOCCS project will bring the technology to a pre-demonstration stage for DNA sensing to strengthen the commercialization and licensing opportunities.

FRET enhancement in aluminum nanoapertures

2 Avril 2015 , Rédigé par JW

FRET enhancement in aluminum nanoapertures

Metal nanoapertures known as zero-mode waveguides (ZMWs) are receiving a large interest as they concentrate light into nanoscale volumes and enable single molecule fluorescence experiments at micromolar concentrations. Within the large single molecule fluorescence toolbox, FRET is certainly one of the most widely used. Therefore it is tempting to associate ZMWs with FRET. However, such experiments are challenged by the complex influence the metal may have on the FRET process.

In a recent Chem Phys Chem article, we quantify the FRET rates and efficiencies between individual donor-acceptor pairs in aluminum zero-mode waveguides. We also compare the FRET results between ZMWs milled in gold and aluminum, and discuss the influence of plasmon resonance effects.

Given the large interest raised by aluminum ZMWs and FRET separately, we believe that our detailed report will help to expand the application of ZMWs as new devices for enhanced single molecule FRET at physiological concentrations.

Plasmonics and Metamaterials at CLEO Europe EQEC Munich 2015

9 Mars 2015 , Rédigé par JW

The technical program meeting for the CLEO Europe EQEC conference has just been held. For the EH Plasmonics and Metamaterials topic, we will have a total of seven sessions:
- Dielectric and hyperbolic metamaterials
- Chirality in plasmonics and metamaterials
- Plasmons in Low dimensionan materials
- Emission control with nanoantennas
- Nanoantennas: from sensing to thermoplasmonics
- Active plasmonics and metamaterials
- Coherent effects in nanophotonics
These sessions will provide an outstanding overview of current topics and future trends in metal nanophotonics from fundamentals towards applications and including all spectral regimes: plasmonic nanostructures, antennas, cavities and waveguides; metamaterials; hybrid materials; nonlinear structures and effects; active systems, systems with gain.

Plasmonics and Metamaterials at CLEO Europe EQEC Munich 2015

Rejection rate at CLEO Europe EQEC

9 Mars 2015 , Rédigé par JW

As we had a large number of submitted abstracts but a limited number of slots at the conference, the selection process was very fierce. About 50% of abstracts could be selected for talks, 25% for poster and unfortunately we had to reject about 25% of abstracts. This (relatively high) rejection rate is imposed by the CLEO/EQEC organization and does not necessarily reflect the will of the topical sub-committee (I would have liked to have more posters and less rejected papers). As the selection process is quite fierce, the abstract quality is a key factor. Here are a few hints to write better abstracts:
* state clearly your subject and the results you obtained
* explain how your work improves on the current knowledge or state-of-the-art
* if your abstract relates to a published article in a peer-reviewed journal, make it apparent.
* avoid parallel submission: do not multiply the abtracts on similar work

Optimizing Nanoparticle Designs for Ideal Absorption of Light

3 Mars 2015 , Rédigé par JW

Metallic nanoparticles and more recently dielectric nanoparticles are receiving tremendous attention due to their ability to concentrate light energy into volumes at the nanometer scale. Optimizing the absorption of light by suitably designed nanoparticles is of crucial importance for a wide range of applications including optical antennas, light harvesting, thermoplasmonics and local surface plasmon resonance sensing.

In an article recently published in ACS Photonics, we develop a new conceptual framework to achieve ideal absorption of light by metallic and dielectric particles. Our main results:
- We provide analytical formulations Eq.(16) describing the conditions to reach ideal absorption up to nanoparticle sizes of several hundreds of nanometer.
- Being analytical, these formulas are of immediate use for other researchers to optimize absorption in nanoparticles.
- The approach covers the important experimental case of core-shell nanoparticles which can satisfy the ideal light absorption condition over the full visible spectrum.
- We also address the problem of light absorption by dielectric and lossy particles, like silicon, that can exhibit both electric and magnetic Mie resonances.
- Our method enables the calculation of non-fundamental ideal absorption modes.

Optimizing Nanoparticle Designs for Ideal Absorption of Light
<< < 1 2 3 4 5 6 7 8 9 10 20 30 40 50 > >>