nanophotonics pick

Microscope Setup Views

29 Décembre 2006 , Rédigé par JW Publié dans #Nanophotonics pick

Maybe one of the most crucial part, which will never be published in a paper ! The main picture shows the microscope at the left, the lasers at the center back, and the confocal detection at the forefront right. There are many optical parts, each has a specific role and is manually assembled and aligned.

The second picture focuses on our Zeiss axiovert 35M (inverted) microscope. I should at some time describe it into more details, maybe on a microscope enthusiasts website (micscape).

And finally the microscope objective, which is by far the central component of the setup. We’re using a Zeiss C-Apochromat with 40x magnification, 1.2 numerical aperture, water immersion, coverslip thickness compensation collar and infinite correction. I’m pretty pleased with it for single-color confocal microscopy close to the diffraction limit, but care must be taken to compensate for chromatic aberrations.

PhD Thesis Quantum Optics

22 Décembre 2006 , Rédigé par JW Publié dans #Nanophotonics pick

A copy of my PhD thesis can be downloaded here (supervisor Philippe Grangier).

This work aims at exploiting the quantum properties of light in order to develop new communication devices. The study is devoted to the quadrature components (quantum continuous variables) of a single mode of the electromagnetic field in the pulsed regime. A quantum key distribution protocol using coherent states has been demonstrated, and opens the way for practical high-rate quantum cryptography devices.

In order to study the use of quantum specificities such as squeezing and entanglement, we have developed a new source of pulsed squeezed states and entangled states. This source is based on the nonlinear conversions of ultrashort pulses. We also describe the first observation of a degaussification protocol, that maps individual pulses of squeezed vacuum onto non-Gaussian states. Finally, we study some optical set-ups allowing for a loophole-free Bell test using continuous variables and efficient homodyne detections.

Quantum information - quantum communication - quantum cryptography - continuous variables - pulsed homodyne detection - femtosecond pulses - parametric amplification - squeezed states - non-Gaussian states - entanglement - Bell's inequalities
<< < 10 11 12 13 14