Surface passivation of zero-mode waveguide nanostructures: benchmarking protocols and fluorescent labels
Zero-mode waveguide nanoapertures receive a large interest owing to their ability to confine light at the nanoscale and improve the detection of single fluorescent molecules. However, unwanted adhesion of the targeted molecules onto the metal surface can be a major issue.
In a recent article published in Scientific Reports, we highlight the role of the fluorescent dye in the surface adsorption phenomenon and we quantify the efficiency of different passivation approaches.
Significance:
- Despite its small size, we show that the fluorescent dye plays a key role in mediating the DNA molecule adsorption to the surface, with the dye’s surface charge and hydrophobicity being determining factors.
- We benchmark different surface passivation approaches and determine the most efficient approach to suppress nonspecific adhesion.
