recent research work
Plasmonic antennas and zero mode waveguides review
We have recently published a review paper about plasmonic antennas and zero mode waveguides (nanoapertures) to enhance the detection and analysis of fluorescent molecules. Single molecule spectroscopy techniques, FRET and FCS can greatly benefit from zero mode waveguides and plasmonic antennas to enter a new dimension of molecular concentration reaching physiological conditions. You can find the review on WIREs Nanomedicine and Nanobiotechnology, or alternatively, we posted an unedited version on arXiv.
Next conference: NanoLight 2014 Benasque
Petru, Juan and Jerome will attend the NanoLight 2014 conference in Benasque during the first week of March. They will give one talk and three poster contributions:
- Plasmonic enhanced fluorescence energy transfer
- Enhanced fluorescence emission from resonant DNA assembled plasmonic nanoantennas loaded with single dye molecules
- Homogenization of metamaterials through the singular analysis of scattering spectra
- Optical fiber probe for remote single molecule fluorescence sensing
Beaming of fluorescence light with plasmonic crystals
Collecting each and every photon that a single molecule emits is a major goal in nanophotonic devices. To boost extraction efficiencies, the two mainstream strategies are on one hand plasmonics to enhance local field strengths and induce antenna effects, and on the other hand photonic crystals that aim to redirect light using strong dispersion at photonic band edges.
In a recent ACS Nano publication, we bridge the gap between these two opposite but complementary approaches and demonstrate a general strategy based on a plasmonic analog of photonic crystals. We show that already small plasmonic crystals patterned in gold film result in strong directionality of emission for molecules located in the structure.
This work pioneers the control of directionality by coherent coupling in finite antenna arrays driven by a single emitter. Moreover, it demonstrates that fluorescence radiation patterns can be designed at will by engineering surface plasmon Bloch modes. These results open a rich toolbox to engineer single photon emitters to emit selectively in particular angles, polarization states, or in more exotic beam profiles.
Latest paper: Weierstrass factorization in nanophotonics
Optimizing the resonant properties of complex optical antennas is often a complex and time-consuming task. To ease the computational process and provide physical guidelines to the design optimization, we introduced in a publication in Physical Review A (highlighted as Rapid Publication) the so-called Weierstrass factorization theorem as a new tool in nanophotonics. We demonstrated that the scattering matrix can be decomposed exactly into a set of Lorentzian resonances over an arbitrary broad frequency range, and that the finding of these anomalies accurately determines all the scattering properties. This powerful approach does not require any fitting parameters and can take into account consistently an arbitrary number of modes. It can be applied to a broad range of cases, as we will show in forthcoming papers.