Articles récents

4th Summer School On Plasmonics SSOP4, Sept. 2017, Porquerolles

18 Mai 2017 , Rédigé par JW

Submissions and registrations for the 4th Summer School On Plasmonics (SSOP4) are now open. The school will be held on September 3-8, 2017, in Porquerolles, one of the most beautiful island of the Mediterranean sea. Please find more information at

Lectures and tutorials presented by international specialists on plasmonics will cover the following topics:
- Resonant Light scattering by nanoparticles
- Interaction forces between plasmonic nanoparticles
- Hyperbolic Metamaterials, Metasurfaces
- Purcell factor, single photon sources, FRET, fluorescence, strong coupling
- NSOM microscopy
- Spectral filters
- DNA nanotechnologies, plasmonic sensors
- Cathodoluminescence spectroscopy
- Nanofabrication technologies,Ellipsometry and polarimetry

Key arguments for your supervisor: rare advanced lectures on modern plasmonics + excellent quality of invited lecturers +  excellent value for the money, the registration fee covers all accomodation & food expenses.


NanoVista project results on Cordis

15 Mai 2017 , Rédigé par JW

From the ICFO news: The European Commission has a very clear strategy for the effective dissemination and exploitation of EU-funded research results in which CORDIS (Community Research and Development Information Service) plays a primary role. The NANO-VISTA project, coordinated by ICREA Professor at ICFO Dr. Maria Garcia-Parajo, was recently highlighted by the European Commission’s Project Officer and selected by the CORDIS Editorial Team to be written about in a "Results in Brief" article, given the exciting results and promising aspects of the project.

Full CORDIS article: Nanophotonic antennas unveil the nanoscale mechanisms of disease

Turning Plasmonic Antennas on the Right Side: Template Stripping Maximizes Single Molecule Fluorescence Enhancement

15 Mars 2017 , Rédigé par JW

Plasmonics is looking for nanogap antennas featuring narrow gap sizes, full accessibility to the plasmonic hotspot and high fabrication throughput. However, the current fabrication methods remain limited to gaps typically around 15-20 nm. Importantly, the plasmonic hotspot is often buried into the structure and not directly accessible for sensing at the antenna surface, thereby limiting the antenna optical performance when it comes to probing molecules.

In a recent Nano Letter article “In-plane plasmonic antenna arrays with surface nanogaps for giant fluorescence enhancement”, we present large arrays of nanoantennas, fabricated by a new approach combining electron beam lithography with planarization, etch back and template stripping. The flat arrays of nanoantennas feature 10 nm gaps with sharp edges and direct surface accessibility of the plasmonic hotspot. This improved nanoantenna fabrication and full access of the hotspot opens up the possibility of fully exploiting the physical properties of plasmonic antennas for a broad range of applications, such as biosensing at membranes or in nanofluidic channels, light harvesting, photocatalysis…


- We demonstrate the superior performance of these surface antennas by probing single fluorescent molecules, and reach huge fluorescence enhancement factors up to 15,000-fold, outperforming previous plasmonic realizations.

- Compared to the previous methods, the combination of back etching with template stripping drastically improves the optical performance of plasmonic nanoantennas by more than one order of magnitude, as we show in a direct comparison with focused ion beam milling.

- Our fabrication approach is fully scalable, with excellent reproducibility, and can be applied to virtually any antenna design.


Celebrating the 10 years of ERC

15 Mars 2017 , Rédigé par JW

Many things change in ten years, the thirst for discovery remains.


Sneak preview: picogram protein sensing with PhoCCS 5x better and faster than ELISA

20 Février 2017 , Rédigé par JW

PSA detection in protein buffer solution, here's the match:

On the left side: PhOCCS, single mixing step, no washing, 60 min incubation, single readout, 20 pg/mL limit of detection

On the right side: ELISA, three washing and rinsing steps, >3h total process duration, >100 pg/mL limit of detection

Let the figure speak by themselves. Simple sensing. No headache. No complex analysis tricks.