Rejection rate at CLEO Europe EQEC
As we had a large number of submitted abstracts but a limited number of slots at the conference, the selection process was very fierce. About 50% of abstracts could be selected for talks, 25% for poster and unfortunately we had to reject about 25% of abstracts. This (relatively high) rejection rate is imposed by the CLEO/EQEC organization and does not necessarily reflect the will of the topical sub-committee (I would have liked to have more posters and less rejected papers). As the selection process is quite fierce, the abstract quality is a key factor. Here are a few hints to write better abstracts:
* state clearly your subject and the results you obtained
* explain how your work improves on the current knowledge or state-of-the-art
* if your abstract relates to a published article in a peer-reviewed journal, make it apparent.
* avoid parallel submission: do not multiply the abtracts on similar work
Optimizing Nanoparticle Designs for Ideal Absorption of Light
Metallic nanoparticles and more recently dielectric nanoparticles are receiving tremendous attention due to their ability to concentrate light energy into volumes at the nanometer scale. Optimizing the absorption of light by suitably designed nanoparticles is of crucial importance for a wide range of applications including optical antennas, light harvesting, thermoplasmonics and local surface plasmon resonance sensing.
In an article recently published in ACS Photonics, we develop a new conceptual framework to achieve ideal absorption of light by metallic and dielectric particles. Our main results:
- We provide analytical formulations Eq.(16) describing the conditions to reach ideal absorption up to nanoparticle sizes of several hundreds of nanometer.
- Being analytical, these formulas are of immediate use for other researchers to optimize absorption in nanoparticles.
- The approach covers the important experimental case of core-shell nanoparticles which can satisfy the ideal light absorption condition over the full visible spectrum.
- We also address the problem of light absorption by dielectric and lossy particles, like silicon, that can exhibit both electric and magnetic Mie resonances.
- Our method enables the calculation of non-fundamental ideal absorption modes.
Deep Punj's thesis online
Optical antennas for single molecule fluorescence detection at physiological concentration
Free download at tel-01119033v1
Video NanoBioPhotonics Institut Fresnel
Watch our new video featuring the nanobiophotonics squad, best enjoyed with maximum resolution and high volume.
The video was realized by Olivier Caquelin Prod, see also his other videos on his youtube account. It was a great pleasure to deal with him.
The big update
With the transfer to the new kiwi platform, Overblog almost killed the blog. The transfer was a real mess and all articles in 2006-2012 period have been lost...
I seriously considered shutting down this site and going elsewhere, but at the end, I like the blog concept. It's about... being different.
I hope you'll enjoy the new version.