Articles récents

Mosaic Fellows

14 Mars 2008 , Rédigé par JW Publié dans #Fancy lab

Some pics of Mosaic colleagues in action !

Dr. Hervé Rigneault

Colleagues3.jpg 

Dr. Pierre-François Lenne

Colleagues1.jpg 

Dr. Patrick Ferrand

Colleagues2.jpg

Latest paper published : emission and excitation enhancements in single gold nanoapertures

14 Mars 2008 , Rédigé par JW Publié dans #Recent research work

Released in the march 03rd issue of Optics Express : we detail the role of single nanometric apertures milled in a gold film to enhance the fluorescence emission of Alexa Fluor 647 molecules. By “detailing”, we mean we characterise the effects of the nanoaperture both on the excitation and emission phenomena that form the fluorescence process.  

The major novelty in this study is the introduction of a fluorescence characterization procedure combining fluorescence correlation spectroscopy and fluorescence lifetime measurements.

For the first time, we characterize a broad range of nanoaperture diameters from 80 to 310 nm. This allows us to highlight the link between the fluorescence enhancement and the local photonic density of states.  

These results are of great interest to increase the effectiveness of fluorescence-based single molecule detection and to understand the interaction between a quantum emitter and a nanometric metal structure.

Freely available for download :  http://www.opticsexpress.org/abstract.cfm?id=154338

SchemManipBlog.JPG
Fig_CR_blog.jpg

Review Surface-Enhanced Fluorescence

14 Mars 2008 , Rédigé par JW Publié dans #Nanophotonics pick

Emmanuel Fort and Samuel Grésillon recently published a very nice and complete review on surface-enhanced fluorescence. Highly recommended !

Fluorescence is widely used in optical devices, microscopy imaging, biology, medical research and diagnosis. Improving fluorescence sensitivity, all the way to the limit of single-molecular detection needed in many applications, remains a great challenge. The technique of surface enhanced fluorescence (SEF) is based upon the design of surfaces in the vicinity of the emitter. SEF yields an overall improvement in the fluorescence detection efficiency through modification and control of the local electromagnetic environment of the emitter. Near-field coupling between the emitter and surface modes plays a crucial role in SEF. In particular, plasmonic surfaces with localized and propagating surface plasmons are efficient SEF substrates. Recent progress in tailoring surfaces at the nanometre scale extends greatly the realm of SEF applications. This review focuses on the recent advances in the different mechanisms involved in SEF, in each case highlighting the most relevant applications.

http://www.iop.org/EJ/abstract/0022-3727/41/1/013001/

Latest publication : plasmon-assisted enhancement in a single nanoaperture

20 Février 2008 , Rédigé par JW Publié dans #Recent research work

Published recently in Optics Express, it’s freely available at :
http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-3-2276

A single nanometric aperture surrounded by a circular channel groove in a metallic screen can increase the electric field intensity inside the central aperture up to 50 fold. Detailed analysis of cavity modes and their coupling through surface plasmon wave determine the parameters leading to maximum field enhancement. This effect can be used in high-efficiency single-molecule fluorescence analysis in attoliter volumes.


PopovGroove.JPG

Latest paper published

21 Janvier 2008 , Rédigé par JW Publié dans #Recent research work

Now it’s made available online : D. Gerard et al, Phys Rev B 77, 045413 (2008)

Briefly, we experimentally compare the properties of circular nanoapertures milled in gold and aluminium to enhance the fluorescence of dyes diffusing within the nanoapertures. Our main result is that nanoapertures in gold exhibit much higher fluorescence enhancement. We discuss the influence of a noble metal holding plasmonic resonances in the visible range such as gold. Altogether, these results provide crucial knowledge for the design of nanoapertures towards high-efficiency single-molecule analysis.


FigPRB.JPG